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For a ~oMutonomous system with one degree of freedom we have obtained the 

conditions for the generation of complex subharmonic oscillations and we have 

shown the possibility of the generation of whole sets of unstable subharmonic 
modes by violation of conditions for existence of periodic motion connected 

with the change in the sequence of passage of the phase trajectory through re- 

gions of piecewise-continuity. The periodic mode of the motion of a piecewise- 
~ntinuo~ system is characterized by a specific sequence of passage of the phase 

trajectory through regions of piecewise-continuity. Every violation of this se- 

quence of joining rsewing together”] the separate pieces of trajectories signifies 

a violation of conditions for the existence of periodic motion of a given type 

and corresponds to a certain C-bifurcation. In the simplest case, since the sys- 

tem parameters vary, it is possible to have here either a transition of one type 
of mode into another or a merging of modes of two different types and their 

subsequent vanishing. The more complicated case of the doubling of the period 

of oscillation at a C-bifurcation was analyzed in [l]. There are no fundamen- 
tal difficulties in the study of the case of generation of a subharmonic mode of 

order 1 / n, whose II rotations of phase trajectory are joined in a definite man- 

ner from two types of trajectories of the modes partici~ting in the bifurcation, 

However, the awkwardness of the expression for the conditions of existence of 

such mode makes the solution of the problem in the general case unsuitable for 
the investigation of a real system. 

In the present paper we investigate new cases of C--bifurcation on the exam- 

ple of the forced oscillations of a linear dissipative system with one degree of 

freedom. The bifurcations are connected with the setting of a motion limiter, 
We have obtained the conditions for the generation of complex subharmonic 

oscillations and have shown the possibility of generation of whole sets of unsta- 

ble subharmonic modes. The number of these modes increases as the period of 

the external excitation decreases, while the structure of the parameter space 

partitioning into regions of their existence becomes all the more “fine”. 
The investigation of the periodic motions of piecewise-continuous systems is 

often met with insurmountable difficulties associated with the determination of 
the stability region for a mode of a given type, as well as with the impossibility 
of preassigning the types of motion which are realized in specified regions of 

the parameter space. Therefore, the detection of cases of unstable mode gene- 
ration and the investigation of regions of their existence is of particular practi- 
cal importance, if they permit the disclosure of dangerous boundaries of the re- 
gion of stable modes [23. In this paper we calculate a dangerous boundary in 

759 



760 M.l.Feigi:: 

the parameter space, corresponding to the vanishing of an unstable subharmo- 
nic mode, because of its merging with a stable mode of the same type. It turns 

out that the ratio of the “amplitude” of the dangerous mode to the amplitude 

of the forced linear oscillations of the system with the same parameter values 

grows strongly with the increase of the order of the subharmonic mode. Thus, a 
subharmonic mode can manifest itself the stronger the finer is the structure of 

the parameter space partitioning. 

1. Let us examine the C-bifurcations of the forced oscillations of a linear dissipa- 
tive system with one degree of freedom when it collides with a fixed motion limiter. 

The equations of motion for the system written in dimensionless form, are 

2” + 2IJ’ + I% = I’ (T)) x<d (1.1) 

II^, -- R.r_' , z = d (1.2) 

Here P (T) is a T-periodic time function, the coefficient h characterizes the viscous 

friction (0 < A < l), and R is the velocity restitution coefficient under impact 

(0 < R < 1). We denote the considered motions by I’ (n, k), where k is the num- 

ber of impacts (1.2) within a period equal to nT (n = 1,2, . . .). 
Let p (7) be a particular solution of Eq. (1. l), corresponding to the steady-state forced 

oscillations of the linear system. Then the general solution of the linear equation (1.1) 

can be written as an equation of the point transformation corresponding to the segment 
of the phase trajectory between the point k!i (ri, ~:i‘, Ti) and the point ,$fj (rj, z’j, 

aj) 
xj = pj+ e -xTij [(xi- pi) (+ sin 6Zij -t COS 6Tij -t ) *5+-!isin&ij] (1.3) 

Xj’ = p,’ + e -“‘ij [(xi’ - pi’) (~0s 62,; - +- SintSrij) - v sin 8r1 

‘Cjj = Tj - I$, 6 = 1/l - h2 

The contact of the limiter surface with the phase trajectory corresponds to the case of 

bifurcation considered here. The equation of this singular trajectory is 

.X (%) _ p (T). ,X’ (T)= P’(T), P (4m = d, (1.4) 

It is obvious that the equation for r (n, 0) coincides with Eq. (1.4) for r (1,O) , while 

the trajectory of I’ (n, 0) can be treated as the limit case of the n-reverse trajectory 

of IY (n, 1) as the pre-impact velocity tends to zero. With such an approach we can 

use the results obtained in [1] for answering the question on the nature of the bifurcations 
of the periodic modes r (n, 0) and r (n, I) as they merge. 

Let xl10 (z) and x111 (z) be the characteristic polynomials corresponding to r (12, 0) 
and r (n, 1) in the limit case of merging of their trajectories. Then, since the parame- 
ter d varies, one motion passes into the other, if the condition 

xno (+ 1) x,,~ (+ 1) > 0 (1.5) 

is satisfied; the motions I? (n, 0) and r (n, 1) vanish after merging, if the condition 

XlLO c-t 1) Xn1 t-t 1) < 0 (1.6) 

is satisfied ; a doubled-period motion r (2n, 1) is generated. if the condition 
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Xno (-- 1) xnr t-- 1) < 0 (1.7) 
is satisfied. 

. To obtain Xno ( z ) we analyze the point transformation Mj (kri) of the halfplane 
xi = 0, xi' < 0 into itself, generated by n reversals of phase trajectory (1.3). Here 
“j’ = Zi’ = p’ (Zi), 2ij = n T , correspond to the fixed point of the transformation, 
After the usual procedure of the variation of (1.3) with respect to the variables zi’, Xj:j', 

~1, z, and the substitutions 61cj’= &ri’, 6zj = zSzi , we arrive at the expression 

Xno k4 zzz Q’[zs - 2ze-hnTc~s (nT6) + e-shnTj, n = 1, 2, 3, . . . (1.8) 

To obtain Xnl (z) we analyze the ~ansformation iI#, (~~) of the halfplane 22 = 0, 
xi' < 0 into itself, generated by n. reversals of the phase trajectory, which consists of 
successive transformation of Mj (Mi) in the plane z~:I= d in accordance with Eqs. 
(1.3). the transformation ikfk (MI) of the impact interaction (1.2), and the further trans- 
formation .k?~ (Mk) again in accordance with Eqs. (1.3) (Fig, 1). In the limiting case 
of C-bifurcation the characteristic polynomial assumes the following form : 

Xn1 (4 = - ZX(&-~ (1 + R) xi”e-hnT sin (nT8), n=1,2,3,... 0.9) 

Fig. 1 Fig. 2 

The acceleration 5” < 0 because the function 2 (r) attains its maximum for z= ai. 
Con~quently, in the considered case conditions (1.5) - (1.7) can be written as follows: 

a) the condition for the transition of mode I’ (n, 0) into mode I? (n, ‘I) and the 
coincident condition of the generation of the subharmonic mode r (zn, 1) 

sin (nT6) > 0 (1.10) 

b) the condition for the vanishing of modes I7 (n, 0) and I’ (n, 1) as a result of 
their merging sin (nT6) < Q (1.11) 

Here the characteristic polynomial (1.9) implies the instability of all generated or va- 
nishing modes of type r (n, 1). 

For simplicity we restrict ourselves below to the examination of two sequences of in- 
tervals of variation of the period of the external force: the sequences o.,deflned by the 
inequality 0 < T J 2n < 1 J 21~6 and the sequences j3, defined by 1 f 2n8 < T 1 
2s < I. f n6. According to (1.11) thestable mode I’ (n, 0) merges with the unstable 
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r (n, 1) in intervals p,and both modes vanish with the subsequent decrease of parame- 

ter d . According to (1. lo), in intervals a, the ~ansltion of the stable mode I’ (?z, 0) 
to the unstable r (n, 4) is accompanied either by merging with the unstable mode 

I’ (2n, 1)or by the generation of an unstable mode I? (2n, 1). The generation of I’ (2n, 

1) obtains if T / 2n falls into the first half of interval a,, since this is equivalent to 

T / 23-c E ~3~~. The merging with I- (2n, 1) obtains if T / 2x falls into the second 

half of interval cznrsince this is equivalent to ?’ I’ 2n CZ pze (Fig. 2). If the period of 
the external excitation decreases, the value T / 2n. will belong to an ever larger num- 

ber of intervals a,,, fin , and, consequently, an ever more complex set of subharmonic 
modes with c-bifurcations of the forced oscillations of the linear system r (1, 0) G 

I? (rz, 0) (n = 2, 3, 4, . . .) will be generated. 
Thus, for example, the merging of r (1, 0) with the subharmonic modes I’ (2, if and 

I’ (3, 2) and the generation of the mode I’ (1,1) take place in the interval 2% / 2n E 

(VP, r/a) ; in the interval T6 I 2ar E (lj6, ‘/,J , when the parameter d decreases, the mode 

r (I, 0) is merged with the modes r (3, 1), I’ (4, 1) and further modes l? (i,i) and 

r (2, 1) etc. are generated. 

Thus, from the fact that unstable periodic modes of type r (n, 1) exist in the inter- 

vals pi, ps, 6s. . . . for d > d, follows the existence in the neighborho~ of d = 
de of a whole sequence of unstable modes I? (2n, ‘l), I’ (4n, 1), I’ (8~2, i), . . . 
in the corresponding intervals of variation of the external force period. Here, when T 

decreases, the doubled-period mode r (2n, 1) appears in the region d > d, simul- 

taneously with a reorientation of the existence region of mode I’ (n, 1) relative to the 

axis d = d, (Fig. 2) l The existence of mode r (1, 1) for d > d, was proved 

earlier in fl]. We will consider the question of the existence of more complex modes 

oftype r (~2, k) in the neighborh~d of d = d, . 

2. A periodic mode r (n, k) during which k impact interactions with the limiter 
take place, is assumed to be close to the periodic mode of forced oscillations of the lin- 

ear system in the sense that these modes merge when d --f d, . Let us reduce the prob- 
lem to an investigation of point malformations of the halfplane ic’ = d, 5’ < 0 into 

itself, The phase trajectories of impact interactions are located precisely in this plane. 

A specific sequence of points 

of the transformation corresponds to the considered periodic modes. 
Let us simplify somewhat the problem by assuming the external force to be harmonic 

P (x) = cos or, and the viscous friction coefficient .% 1~: 0, i.e. by keeping the sys- 
tem dissipative only at the expense of not fully elastic impacts, We then obtain the 

equations of the point transformations from Eqs. (1.3) with h -= 0, 6 = 1, p (T) = 

(1 - CC?)-r cos OX and from Eq. (1.2) 

a+1 = d = acosWCi*l f (Xi' + UC0 sino)ri)sin(%i+r_-- zi) + 

(d - U COS~)~i)COS(~~~~ - Z+) 
(2.1) 

"it1 ..-..~~--.- 
R 

C&(l) sin Wri_+r + (5~’ + i-r.0 sin WZJ COS (bit1 - Ti) - 

(d - acosw%J sin(&i - Zi) 

a = (1 - ri?-1 
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The considered periodic mode is characterized by the following sequence of fixed 
points : 

b;, d, (xl-, %I), . . ., (zk’ = Zgf, zk = T,J -,- %tn / 0) (2.2) 

In the limiting case of C-bifurcation this mode degenerates into the forced oscillation 
mode of the linear system and, consequently, 

Xi l * = 0 , sin wzO* = 0, a cos oz,* = d, (2.3) 

k-1 

&-- xi* = miT, 2 mi = n, i=o, I,..., k--l 
0 

Instead of the variables “i we introduce the new variables et = ri - Zi*, and define 
the position of the limiter by the small parameter p = d - d,. In the neighborhood 
of the degenerate trajectory the coordinates of the points of the transformation are 
1 Xi’ i < 1, I ci 1 < 1, which permits us to represent the equations of the point trans- 
formations (2.1) in the linearized form 

(xi’ f d*o*ei) sin in,T = p (1 - cos miT)y i = O? 1, . , ., k - 1 (2.4) 
(xi0 -I da@*&:) COS miT - d,o*&i+l f xi;i,/‘R = p sin mi T 

Together with the periodicity conditions 
l 

8k = as, %k‘ = 50 (2.5) 

system (2.4) yields the following coordinates for the fixed points of the complex mode : 

i=o,f,...,k-1 (2.6) 

Let us further obtain the conditions of existence for a mode of the specified type, i. e. 
conditions for the absence of additional impacts in the time interval between the speci- 
fied impact interactions. In the interval +ci < z < -ci+r , in the neighborhood of the 
degeneration boundary the function 

Ic (z) = a cos QZ + (d - fZ COS WTi) COS (Z - Tij + 

(2~~’ + am sin wli) sin (X - TJ 

has r?l i - 1 maxima reached at the instants ‘ii (j = 1, 2, . . . , Pti - $1. The 
equation for determining Zij 

2’ (Tij) -- 0 

can also be represented in a linearized form, if we pass to the variables 

Y ij = ‘cij - q* - Ei - jT, /=1,2,. . .,mi--1 

After appropriate transformations we obtain in linear approximation the following values 
of function r (x) at points of maximum: 

x (Tij) = d, t p cos (jT) + p_ sin (jT) tg q (2.7) 

For modes of the specified type to exist the values determined by (2.7) must not reach 
d. Consequently, the sought conditions of existence can be written as 



764 

P 
m. ? 

I--coS(jT)-Sin(jT)tg+ >O, 
I j=l,. ., mi-- 1 (2.8) 

Having supplemented these conditions by the requirement x~’ < 0, implied by the me- 

thod of construction of point transformations (2. l), we obtain from (2.6) and (2.8), after 
elementary trigonometric malformations, a system of inequalities which are the neces- 

sary conditions of existence in a neighborhood of a C-bifurcated degeneration of the 
considered periodic modes 

a (mi + mi_lf 
psin o 

ro+ 
co.5 - w cos 

nrni 
T<O (2.9) 

n(mi-ii) 
psin o 

nmi 
cos o sin-+<0 

i=O,l,..., k-l, i-1,2,. , ,, mi-1 

The periodic sequence of values Xi’, pi, rYli must evidently not decompose into sim- 

pler periodic sequences. 
Example 1. By setting m. = n, 

k = 1 from (2.9) we obtain the existence 

condition for an n-fold one-impact peri- 

Fig. 3 Fig. 4 

odic mode I’ (n, 1) 
2nn a(~--ji) nj (2.10) 

p sin yi-< 0, p sin w sin w eos o =<o, j=i,.._, n-l 

The results of the analysis of inequalities (2.10) in the frequency interval 0 < 1 / o < 1 
for n = 1, 2, . . ., 8 are presented in Fig. 3. The hatching shows the regions of exist- 

ence for modes of the corresponding multiplicity. In all cases only the region correspond- 
ing to the highest frequency lies below the axis p = 0. All other regions correspond to 
p > 0, i, e. to d > d,. Consequently, in these cases unstable subharmonic oscillations 
of order n with impacts exist side by side with the stable linear oscillations. 

If we compare the outlined regions of existence for even values of n with the regions 
defined by the doubled-period conditions (l,lO), we conclude that only in the two left- 
hand regions the generation of even harmonics is due to the doubling of the period at a 
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C-bifurcation. The other cases correspond, obviously, to a more complex case of bifur- 
cation. 

Example 2. Let us examine an n-fold two-impact mode. Since similar modes 

can now be of several types, we restrict OUT attention to the case when the interval bet- 

ween impacts approximately equals the period of the external force. In that case m,, = 

1, ml = n - 1, k = 2, and conditions of existence (2.9) assume the form 

n 
p sin $ cos -&- co9 MY?) co (2.11) 

p sin 
n:(n-2-i) 

0 
c*s z (a -1) 

0 sin -$-< 0, j=i,2 ,.*., n- 2 

The regions of existence determined by the analysis of conditions (2.11) are shown in 
Fig. 4, As in the preceding case all regions except those corresponding to the highest 

frequency are arranged for p > 0, and, consequently, the corresponding unstable modes 

exist side by side with the mode of forced linear oscillations. 

3. The described analysis which revealed the generation of whole sets of unstable 
modes of type r (n, k) from the simplest mode of linear oscillations when the displac- 

ement limiter is reached, leads to the following problem : to ascertain the reasons and 

the values of parameters for which these modes vanish. A reasonably complete solution 

of such problem is not possible. However, the finding of the so-called dangerous bouud- 

aries of the stability regions [Z] is of great practical value. In relation to the investiga- 

ted system this corresponds to the vanishing of unstable modes by merging with the stable 

modes in the region of parameters d > d,. It should be noted that the question of the 
existence of stable nonlinear modes side by side with the forced linear oscillations in an 

oscillatory system with limiters is of independent interest and had been repeatedly inves- 

tigated (for example, see [3 - 81). 

It can be shown that the “most dangerous” stable nonlinear mode I? (IZ, 1) necessar- 

ily exists in the neighborhood of the angle of bifurcation o = 2n, d = d,, and it va- 

nishes by merging with an unstable mode of the same type as I’ (n, 1) as the parame- 

ter d increases (Fig. 2). The corresponding value d, should be treated as the minimally 

admissible position of the limiter. If d < d,, then under the action of some random 
factors it is possible for the dynamic system to pass from the mode r (1, 0) with oscil- 

lation amplitude d* to the stable subharmonic mode r (n, 1) whose oscillation “amp- 

litude” can considerably exceed d,. 
Let us find the expression for d, in the case of a harmonic perturbation P (Z)=+• SWT 

taking into account the viscous friction coefficient h. For this we consider the transfor- 

mation of the plane x,-, = d into itself, generated by a segment of phase trajectory(1.3) 

and a single impact interaction (1.2). Setting x1 = z, = d, x1’ = x0*, rl = z. + 
2nn / o, we arrive at the following equations relative to the coordinates of the fixed 
point of the transformation: 

d=Z d (60s tit0 + 2oah sin rim) 
1+ (2aoh)2 + 

so’p sin 6s 

6 (ch I% - cos 6%) (3. If 

ZOO’ -= 00 {sin oz0 - 2oah eos O-GO) 
fl 1 + (2aoh)z + 

x<p (&sin 86 - 8 co9 08 + &-F) 
6 (ch eh - cos 68) - 
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Eliminating the coordinate T() from (3. l), we obtain the equation in x0’ 

d- x0.p sin 06 \s 
/f-Oh 

6 (ch 0h - cos 06) / _I)‘_ d2, (3*2) 

A multiple root of Eq. (3.2) corresponds to the boundary of the merging of the stable 
and the unstable modes. Thus, equating the discriminant of Eq. (3.2) to zero, we obtain 
the sought boundary surface in parameter space 

2 2 
= 1 + 

-g sin 66 

eeh 

(3.3) 
- cos 06 - (h/ 6) sin 136 -- p-1 (ch @A - eos 06) 

Here, depending on the choice of the point transformation, it is further necessary to sa- 

tisfy the inequality x0’ < 0 which in the considered case, reduces to the condition 

sin 86 < 0. The expression 

(Znn sin 06 jz 
82 (6 sh 0h - h sin ebp * sin%<0 (3.4) 

determines the minimum admissible clearance, for the limit value of the coefficient 

of restitution R = 1 . 
The described calculation of t&is in some sense an instructive one. The point isthat 

the ~rt~tioning of the parameter plane into regions of subharmonic modes is defined by 

a structure which becomes finer as the order n of the mode increases. At the same time, 
as follows from (3.4), the ratio of the amplitude of the dangerous subharmonic mode to 

the amplitude of the forced linear oscillations of the system, corresponding to the same 

values of the parameters, considerably increases with the increase of the order of the 

s~h~rnoRic mode, The absolute value of the amplitude decreases rapidly with the 

T 

1 
1 
22 

‘_ 3 

y 0.5 a75 54.3~ 

Fig. 5 

growth of rz, if the excitation level is in- 
dependent of the frequency and increases 

with the growth of n, if this level is pro- 

portional to the square of the excitation 
frequency (the case of kinematic excita- 

tion). Consequently. the mode can mani- 
fest itself the stronger, the finer is the par- 
titioning structure of the parameter space. 

Figure 5 shows the function d, (w) for 

h = 0,l , computed from Eq. (3.4). 
It should be noted that the pattern of 

bif~cation considered above is in a sense 
the simplest one ; the regions of existence 
of the unstable modes r (n, 1) extend 

from the boundary of generation d = d, 
unto the boundary of vanishing by merging 
with stable modes of the same type. In the 
general case the mode defined at the inst- 

ant of generation as I? (n, k), may undergo 
qualitative changes as d grows. Thus, a more complete investigation of the unstable 
periodic motions r (n, 2), considered in Example 2, shows the absence of the boundary 
of their merging with stable modes of precisely the same type. 
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CONSTRUCTION OF SOLUTIONS OF NONLINEAR TWO-DIMENSIONAL PROBLEMS 
ON CURRENT DISTRIBUTION IN AN ANISOTROPICALLY CONDUCTING MEDIUM 

PMM Vol. 38, W 5, 1974, pp. 819-828 
I. M. RUTKEVICH 

(Moscow) 
(Received January 29, 1974. 

Stationary two-dimensional electric current distributions in an anisotropically conduct- 
ing medium having a nonlinear Ohm’s law, are described by the system of equations for- 

mulated in Cl]. Depending on the character of the nonlinear relation between the cur- 

rent density and the electric field,and on the value of the Hall parameter B , this system 

can be of an elliptic or hyperbolic type. For p = 0 the electrodynamic equations are 

analogous to the equations for potential gas dynamic flows, therefore by analogy these 

problems can be solved by the hodograph transformation, as it is done in gas dynamics 
p]. The hodograph transformation generalized for the case B # 0 is applied below to 

simple two-dimensional problems. The relation between the type of system and the po- 
sitive definiteness of the symmetric part of the differential conductivity tensor, is estab- 

lished. Linear equations in the hodograph plane of an effective electric field are obtained 

for the potential and for a function of the electric current. Boundary conditions are for- 
mulated in terms of each of these functions on the image lines for the electrode and di- 
electric regions with straight-line boundaries, For the elliptic case the solution of two 
asymptotic problems are obtained and examined : (1) the field distribution in a strip 
between a perfectly conducting wall and a dielectric wall: (2) the current concentration 
in the region of a semi-infinite electrode edge. The possibility of corresponding solu- 
tions for the hyperbolic case is discussed. For p # 0 exact solutions for particular depen- 


